CHAPTER 6

Results and Discussion

The result of the study is revealed, interpreted and discussed here under;

Descriptive Statistics

Table 1: Descriptive statistics of independent variable with
respect to Mean, Standard Deviation of values and
Coefficient of variance:

SI	Variables	Mean	SD	CV
no.				
1	Age(x1)	40.03	9.44	23.58
2	Education(x2)	6.85	2.91	42.48
3	Family size(x3)	5.05	1.33	26.33
4	Size of holding(x4)	0.51	0.25	49.01961
5	Homestead land(x5)	0.12	0.09	75
6	Family	1160.40	220.32	
	income(farm)(x6)			18.98
7	Family income(off	478.90	190.38	39.75
	farm)(x7)			
8	Cropping Intensity(x8)	244.68	43.20	17.65
9	Crop mix(x9)	1.72	6.99	406.39
10	Livestock(x10)	1.18	0.58	49.15
11	Yield of Rice(x11)	1.38	0.49	35.5
12	Yield of Pulses(x12)	0.03	0.01	33.33

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	79

13	Yield of	8.02	4.92	
	vegetables(x13)			61.34
14	Exposure to	2.83	1.25	
	media(x14)			44.16
15	Disease pest	0.41	0.18	
	incidence(x15)			43.9

Table 1– presents the distribution of variables in terms of Range, SD and CV % of pooled village

It has been found from the study that the mean Age group(X1) is 40.03 years with standard deviation, 9.44 for the total distribution taken for the study. Coefficient of variation of Age (X1) is 23.58% which shows a very high level of consistency in its distribution

The independent variable Education (X2) of farmer, has been found from the study that the mean 6.85 years of schooling with standard deviation, 2.91 for the total distribution taken for the study. Coefficient of variation of Education (X2) is 42.48% which shows a high level of consistency in its distribution.

The independent variable Family size (X3) of farmer, has been found from the study that the mean 5.05 with standard deviation, 1.33 for the total distribution taken for the study. Coefficient of variation of Family size (X3) is 26.33% which shows a high level of consistency in its distribution.

The independent variable size of holding (X4) of farmer, has been found from the study that the mean 0.51bigha with standard deviation, 0.25 for the total distribution taken for the study. Coefficient of variation of size of holding (X4) is 49.01% which shows a high level of consistency in its distribution.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	80

The independent variable homestead land (X5) of farmer. It has been found from the study that the mean land is 0.12 bigha with standard deviation, 0.09 for the total distribution taken for the study. Coefficient of variation of homestead land(X5) is 75.00% which shows a moderate level of consistency in its distribution.

The independent variable Family farm income(X6) of farmer, has been found from the study that the mean 1160.40 Rupees with standard deviation, 220.32 for the total distribution taken for the study. Coefficient of variation of Family farm income (X6) is 18.98% which shows a high level of consistency in its distribution.

The independent variable Family off farm income(X7) of farmer, has been found from the study that the mean 478.90 Rupees with standard deviation, 190.38 Rupees for the total distribution taken for the study. Coefficient of variation of Family off farm income (X7) is 39.75% which shows a high level of consistency in its distribution.

The independent variable cropping intensity (X8) of farm land, has been found from the study that the mean 244.68 Rupees with standard deviation, 43.20 for the total distribution taken for the study. Coefficient of variation of cropping intensity (X8) is 17.65% which shows a high level of consistency in its distribution.

The independent variable crop mix (X9) of farm land, has been found from the study that the mean 1.72 with standard deviation, 6.99 for the total distribution taken for the study. Coefficient of variation of crop mix (X9) is 406.39% which shows high level of inconsistency in its distribution.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	81

The independent variable Livestock (X10) of farmer, has been found from the study that the mean 1.18 with standard deviation, 0.58 for the total distribution taken for the study. Coefficient of variation of livestock (X10) is 49.15% which shows a high level of consistency in its distribution.

The independent variable yield of rice(X11) of farm land, has been found from the study that the mean 1.38 Quintals with standard deviation, 0.49 for the total distribution taken for the study. Coefficient of variation of yield of rice(X11) is 35.50% which shows a high level of consistency in its distribution.

The independent variable yield of pulses(X12) of farm land, has been found from the study that the mean 0.03quintals with standard deviation, 0.01 for the total distribution taken for the study. Coefficient of variation of yield of pulses (X12) is 33.33% which shows a high level of consistency in its distribution.

The independent variable yield of vegetables (X13) of farmer, has been found from the study that the mean 2.83 hours with standard deviation, 1.25 for the total distribution taken for the study. Coefficient of variation of Yield of Vegetable (X13) is 44.16% which shows a high level of consistency in its distribution.

The independent variable Exposure to media(X14) of farmer, has been found from the study that the mean 0.51bigha with standard deviation, 0.25 for the total distribution taken for the study. Coefficient of variation of Exposure to media (X14) is 49.01% which shows a high level of consistency in its distribution.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	82

The independent variable perception on disease pest incidence (X15) of farmer, has been found from the study that the mean 0.41 with standard deviation, 0.18 for the total distribution taken for the study. Coefficient of variation of perception on disease pest incidence (X15) is 43.90% which shows a high level of consistency in its distribution.

Coefficient of Correlation tables

SI no.	variables	r value	Remarks
1	Age(x1)	-0.018	
2	Education(x2)	0.223	
3	Family size(x3)	-0.146	
4	Size of holding(x4)	-0.166	
5	Homestead land(x5)	0.032	
6	Family income(farm)(x6)	-0.158	
7	Family income(off farm)(x7)	0.032	
8	Cropping Intensity(x8)	-0.264	*
9	Crop mix(x9)	-0.061	
10	Livestock(x10)	-0.019	
11	Yield of Rice(x11)	0.275	*
12	Yield of Pulses(x12)	0.327	**
13	Yield of vegetables(x13)	0.198	
14	Exposure to media(x14)	0.197	
15	Disease pest incidence(x15)	0.192	

Table 2: Coefficient of Correlation (r): Mandaysandmonsoon(Y1)vs. 15 independent variables(x1-x15).

Result

Table 2 presents the coefficient of correlation between Y1 (mandays and monsoon) and 15 independent variables. It has been found thant following variables viz. Copping intensity(x8), yield of rice(x10) and

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	83

yield of pulses(x11) have recorded significant correlation with the dependent variable.

Revelation

The variables are basically agro economic by nature and they have shown that the cropping intensity or yield of crops is significantly influencing the perception on mandays affected due to monsoon. The monsoon behaviour is closely related to crop husbandry and management, which also generate mandays and creates livelihood there from.

Table 3: Coefficient of Correlation (r): Income and monsoon.(Y2)vs. 15 independent variables(x1-x15).

SI no.	variables	r value	Remarks
1	Age(x1)	0.001	
2	Education(x2)	0.127	
3	Family size(x3)	0.083	
4	Size of holding(x4)	-0.419	**
5	Homestead land(x5)	-0.289	*
6	Family income(farm)(x6)	-0.976	**
7	Family income(off farm)(x7)	-0.144	
8	Cropping Intensity(x8)	-0.225	
9	Crop mix(x9)	-0.112	
10	Livestock(x10)	-0.361	**
11	Yield of Rice(x11)	-0.068	
12	Yield of Pulses(x12)	-0.036	
13	Yield of vegetables(x13)	0.220	
14	Exposure to media(x14)	0.144	
15	Disease pest incidence(x15)	0.143	

Result

Table 3 presents the coefficient of correlation between Y2 (income and monsoon) and 15 independent variables. It has been found that

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	84

following variables viz. Size of holding(x4), homestead land(x5), farm family income(x6) and livestock(x10) have recorded significant correlation with the dependent variable.

Revelation

The results have been indicated that income has been affected due to delayed monsoon and it has got proportionate impact on farm family income as well as livestock enterprises and worst sufferers are those having small size of holding and homestead land.

SI no.	variables	r value	Remarks
1	Age(x1)	0.999	**
2	Education(x2)	-0.507	**
3	Family size(x3)	0.212	
4	Size of holding(x4)	-0.068	
5	Homestead land(x5)	-0.062	
6	Family income(farm)(x6)	-0.012	
7	Family income(off farm)(x7)	-0.050	
8	Cropping Intensity(x8)	0.066	
9	Crop mix(x9)	-0.126	
10	Livestock(x10)	0.039	
11	Yield of Rice(x11)	-0.149	
12	Yield of Pulses(x12)	-0.137	
13	Yield of vegetables(x13)	-0.119	
14	Exposure to media(x14)	-0.591	**
15	Disease pest incidence(x15)	-0.591	**

Table 4: Coefficient of Correlation (r): Migration and monsoon(Y₃)vs. 15 independent variables(x₁.x₁₅).

Result

Table 4 presents the coefficient of correlation between Y3(migration and monsoon) and 15 independent variables. It has been found that following variables viz. age(x1), education(x2), perception on disease

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	85

- pest(x14) and exposure to media(x14) have recorded significant correlation with the dependent variable.

Revelation

The result indicates that those who are having higher education got a propensity for migration. Younger age respondents have shown higher affinity towards migration. Delayed monsoon has every possibility to invite disease and pest problems to make the management further complex and challenging. Higher exposure to media and community has contributed to the respondents to earn impression and knowledge on the effect of delayed monsoon both by quality and quantity.

Table 5: Coefficient of Correlation (r): — festivals and monsoo	n
(Y ₄).vs. 15 independent variables(x ₁ .x ₁₅).	

SI no.	variables	r value	Remarks
1	Age(x1)	0.213	
2	Education(x2)	-0.159	
3	Family size(x3)	0.999	**
4	Size of holding(x4)	-0.354	
5	Homestead land(x5)	-0.669	
6	Family income(farm)(x6)	-0.100	
7	Family income(off farm)(x7)	-0.184	
8	Cropping Intensity(x8)	0.093	
9	Crop mix(x9)	-0.026	
10	Livestock(x10)	-0.515	**
11	Yield of Rice(x11)	-0.915	**
12	Yield of Pulses(x12)	-0.882	**
13	Yield of vegetables(x13)	-0.287	*
14	Exposure to media(x14)	-0.171	
15	Disease pest incidence(x15)	-0.170	

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	86

Table 5 presents the coefficient of correlation between Y4 (festivals and monsoon) and 15 independent variables. It has been found that following variables viz. family Size(x3), livestock(x10), yield of rice(x11), yield of pulses(x12), yield of vegetables(x13) have recorded significant correlation with the dependent variable.

Revelation

In west Bengal autumn festivals are hugely dependent on monsoon rainfall and monsoon behaviours as well. In most cases festivals are marred by delayed monsoon which sometimes goes extended upto last week of September. The monsoon analysis by the climate scientists depicts that post monsoon rainfall is increasing bi 10-15% over the last 100 years and thats why the prospect of early vegetables which will be used in festivals are jeopardised. So, also for livestock enterprises as well as the enterprises related to the observant s of rituals and festivals.

Table 6: Coefficient of Correlation (r): Market and monsoon (Y5)vs. 15 independent variables(x1-x15).

SI no.	variables	r value	Remarks
1	Age(x1)	0.224	
2	Education(x2)	-0.072	
3	Family size(x3)	0.608	**
4	Size of holding(x4)	-0.743	**
5	Homestead land(x5)	-0.677	**
6	Family income(farm)(x6)	-0.364	**
7	Family income(off farm)(x7)	-0.008	
8	Cropping Intensity(x8)	-0.351	**
9	Crop mix(x9)	-0.097	

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	87

10	Livestock(x10)	-0.437	**
11	Yield of Rice(x11)	-0.528	**
12	Yield of Pulses(x12)	-0.462	**
13	Yield of vegetables(x13)	-0.129	
14	Exposure to media(x14)	-0.126	
15	Disease pest incidence(x15)	-0.126	

Table 6 presents the coefficient of correlation between Y5(market and monsoon) and 15 independent variables. It has been found that following variables viz.family Size(x3),size of holding(x4), homestead land(x5), farm family income(x6), cropping intensity(x8), livestock(x10), yield of rice(x11) and yield of pulses(x12) have recorded significant correlation with the dependent variable.

Revelation

Almost all the agro-climatic variables have been found to be negatively impacted by delayed monsoon. So, only the respondents with small family size have been found worst affected while comparing with respondents having large family size.

Table 7: Coefficient of Correlation (r): Sociological perception of monsoon(Y₆) vs. 15 independent variables(x₁₋x₁₅).

SI no.	variables	r value	Remarks
1	Age(x1)	0.250	*
2	Education(x2)	-0.077	
3	Family size(x3)	0.603	**
4	Size of holding(x4)	-0.746	**
5	Homestead land(x5)	-0.674	**
6	Family income(farm)(x6)	-0.399	**
7	Family income(off farm)(x7)	-0.016	
8	Cropping Intensity(x8)	-0.354	**

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	88

9	Crop mix(x9)	-0.105	
10	Livestock(x10)	-0.442	**
11	Yield of Rice(x11)	-0.518	**
12	Yield of Pulses(x12)	-0.451	**
13	Yield of vegetables(x13)	-0.116	
14	Exposure to media(x14)	-0.130	
15	Disease pest incidence(x15)	-0.130	

Table 7 presents the coefficient of correlation between Y6(sociological perception on monsoon) and 15 independent variables. It has been found that following variables viz. Age(x1),family Size(x3),size of holding(x4), homestead land(x5), farm family income(x6), cropping intensity(x8), livestock(x10), yield of rice(x11) and yield of pulses(x12) have recorded significant correlation with the dependent variable.

Revelation

Respondents with small family size and younger age have perceived the negative impact of delayed monsoon. The sociology as a whole has well been inflicted with reciprocates damages in yield and the marketability of the agricultural produces. Taking all these in consideration the sociology of monsoon can be predicted by all these following variables. Age(x1),family Size(x3),size of holding(x4), homestead land(x5), farm family income(x6), cropping intensity(x8), livestock(x10), yield of rice(x11) and yield of pulses(x12).

> The Sociology of Monsoon ISBN: 978-93-85822-58-2 89

Step down Regression Analysis

Table8: Step down Regression Analysis, Man daysand monsoon(Y_1) VS 15 Causal variables(x_1 - x_{15}):

SI	Variables	Beta	Beta x	Reg.coef.	S.E. of	t
no.			R	В	В	value
1	Age(x1)	0.142	-0.697	0.004	0.004	0.911
2	Education(x2)	1.348	81.916	0.119	0.069	1.708
3	Family size(x3)	0.745	-29.740	0.143	0.070	2.039
4	Size of	0.521	-23.573	0.528	0.499	1.059
	holding(x4)					
5	Homestead	-	-7.148	-2.360	1.829	1.290
	land(x5)	0.820				
6	Family	-	4.713	0.000	0.000	0.701
	income(farm)(x6)	0.110				
7	Family income(-	-1.011	0.000	0.000	0.814
	off farm)(x7)	0.113				
8	Cropping	-	9.172	-0.001	0.001	0.807
	Intensity(x8)	0.123				
9	Crop mix(x9)	-	0.559	-0.001	0.005	0.251
		0.033				
10	Livestock(x10)	0.062	-0.333	0.027	0.087	0.317
11	Yield of	0.182	13.623	0.096	0.476	0.201
	Rice(x11)					
12	Yield of	1.228	109.227	26.913	15.795	1.704
	Pulses(x12)					
13	Yield of	-	-0.641	-0.001	0.008	0.077
	vegetables(x13)	0.012				
14	Exposure to	-	-	-1.455	3.086	0.471
	media(x14)	7.095	369.811			
15	Disease pest	6.004	313.743	8.617	21.281	0.405
	incidence(x15)					

MULTIPLE R-SQ=36.77%

S.E=0.80

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	90

Table 9: Regressio	on Analysis, Man	days and monsoor	ו (Y ₁) VS 15
	Causal variables	s(x _{3,} x _{5,} x ₁₂):	

variables	Beta	Beta x R	Reg.coef. B	Coef of B	S.E. of B	t value
Family size(x3)	0.585	-32.769	-0.287	0.112	0.048	2.365
Homestead land(x5)	- 0.359	-4.388	0.063	-1.032	0.474	2.180
Yield of Pulses(x12)	1.099	137.167	0.639	24.089	5.733	4.201

R-SQ =26.21%

S.E=0.41

Result

Table 8 presents the multiple regression analysis between criterion variable man days and monsoon vs. 15 causal variables. It has been found that the variable education(x2), family size((x3) and yield of pulses(x12) have contributed substantially to the variance embedded with the consequent variable y1.due to delayed monsoon and at the same time, an increase in post monsoon rainfall the yield of pulses have to suffer.

The R^2 value being 0.3677, it is to infer that 36.67 per cent of variance in the consequent variable has been explained by the combination of these 15 causal variables.

Table 9 presents the step wise regression and it has been depicted that the 3 causal variables that are family size(x3), homestead land(x5), yield of pulses(x12) have been retained at the last step.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	91

The R^2 value being 0.2621, it is to infer that 26.21% of variants in the consequent variable has been explained by the combination of these 3 causal variables.

Revelation

The perceived loss of mandays due to delayed monsoon has well been predicted by 3 functional variables viz. family size(x3), homestead land(x5), yield of pulses(x12) to imply that those having more lands under crop especially that of pulses and higher homestead land with a possibility of vegetable enterprises have become more adept to perceive the negative impact of delayed monsoon.

Table10: Step down Regression Analysis, Income and monsoon (Y_2) vs 15 causal variable $(x_1 \cdot x_{15})$:

SI	Variables	Beta	Beta	Reg.coef.	S.E.	t
110.			R	D		value
1	Age(x1)	0.009	0.001	0.000	0.001	0.228
2	Education(x2)	- 0.071	-0.942	-0.008	0.023	0.357
3	Family size(x3)	- 0.019	-1.162	-0.005	0.024	0.203
4	Size of holding(x4)	- 0.070	3.048	-0.095	0.168	0.565
5	Homestead land(x5)	0.082	-2.454	0.318	0.618	0.514
6	Family income(farm)(x6)	- 0.964	98.251	-0.002	0.000	24.572
7	Family income(off farm)(x7)	0.033	-0.496	0.000	0.000	0.947
8	Cropping Intensity(x8)	- 0.014	0.324	0.000	0.000	0.348

The Sociology of Monsoon ISBN: 978-93-85822-58-2

92

9	Crop mix(x9)	-	0.099	0.000	0.002	0.251
		0.008				
10	Livestock(x10)	0.012	-0.457	0.007	0.029	0.247
11	Yield of	0.068	0.487	-0.049	0.161	0.302
	Rice(x11)					
12	Yield of	0.000	-0.002	0.014	5.334	0.003
	Pulses(x12)					
13	Yield of	0.018	0.413	0.011	0.003	0.463
	vegetables(x13)					
14	Exposure to	2.660	39.934	0.733	1.042	0.704
	media(x14)					
15	Disease pest	-	-	-4.928	7.187	0.686
	incidence(x15)	2.553	38.044			

R-SQ=96.01%

S.E=0.27

Table11: Regression Analysis, Income and monsoon (Y_2) vs 1 causal variable $(x_6)_{:}$

SI	Variables	Beta	Beta x	Reg.coef.	S.E.	t value	VIF
no.			R	В	of B		
1.	Family	-	100.00	-0.002	0.00	36.02	1.00
	income(farm)(x6)	0.978					
2 R	value-95.72%		S.E	41			

Result

Table 10 presents the multiple regression analysis between exogenous variable income and monsoon vs. 15 causal variables. It has been found that the variable farm family income(x6) has contributed to the substantive variance embedded with the consequent variable y2.

The R^2 value being 0.9601, it is to infer that 96.01% of variants in the consequent variable has been explained by the combination of these 15 causal variables.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	93

Table 11 presents the step wise regression and it has been depicted that the 1 causal variables that is farm family income(x6) has been retained at the last step.

The R² value being 0.9572, it is to infer that 95.72% of variants in the consequent variable has been explained by the combination of these 1 causal variable.

Revelation

The perceived loss of income due to delayed monsoon has well been affected by the one functional variable, farm family income(x6) .it implied that if delayed monsoon or over monsoon is there, the crop loss would occur and substantial farm income of the family would have been hampered.

SI	Variables	Beta	Beta x R	Reg.coef	S.E.	t value
				В		value
1	Age(x1)	1.00	100.16	0.028	0.00	1411.
		2	4		0	089
2	Education(x2)	-	0.536	-0.001	0.00	2.540
		0.00			0	
		9				
3	Family size(x3)	-	-0.163	-0.001	0.00	4.610
		0.00			0	
		8				
4	Size of	-	0.014	-0.002	0.00	0.894
	holding(x4)	0.00			2	
	-	2				
5	Homestead	0.00	-0.018	0.008	0.00	0.982
	land(x5)	3			8	

Table 12: Step down Regression Analysis, Migration and monsoon (Y_3) vs 15 causal variable(x_{1} , x_{15})

The Sociology of Monsoon ISBN: 978-93-85822-58-2

94

6	Eamily		0.001	0.000	0.00	1 202
0	incomo(farm)	-	0.001	0.000	0.00	1.595
		0.00			0	
	(X6)	1				4 1 - 0
/	Family income(0.00	-0.005	0.000	0.00	1.478
	off farm)(x7)	1			0	
8	Cropping	0.00	-0.002	0.000	0.00	0.469
	Intensity(x8)	0			0	
9	Crop mix(x9)	0.00	-0.023	0.000	0.00	2.990
	• • • •	2			0	
10	Livestock(x10)	-	-0.004	0.000	0.00	1.139
		0.00			0	
		1			-	
11	Yield of	0.00	-0.022	0.001	0.00	0.359
	Rice(x11)	1			2	
12	Yield of		0 097	-0156	0 07	2 1 4 2
	Pulses(x12)	0.00	0.007	0.100	3	2.112
		7			5	
13	Vield of		0.021	0.000	0.00	2 4 8 8
15	vegetables(v13)	0.00	0.021	0.000	0.00	2.400
	vegetables(x13)	0.00			0	
14	Franciscus to	2	0.205	0.022	0.01	2.200
14	Exposure to	0.15	-9.265	0.032	0.01	2.280
	media(X14)	/			4	
15	Disease pest	-	8.669	-0.213	0.09	2.171
	incidence(x15)	0.14			8	
		7				

R SQ=100%

S.E=0

Table 13: Regression Analysis, Migration and monsoon(Y₃) vs 1 causal variable(x14)

SI	Variables	Beta	Beta x	Reg.coef.	S.E.	t	VIF
no.			R	В	of B	value	
1.	Exposure to	-	100.000	-0.123	0.022	5.586	1.000
	media(x14)	0.591					
R	² Value-34.98%		S.E05	5			

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	95

Table 12 presents the multiple regression analysis between exogenous variable migration and monsoon vs. 15 causal variables. It has been found that the variable education(x2) ,crop mix(x9),yield of pulses(x12), yield of vegetables(x13),exposure to media(x14), perception on disease pest(x15) have contributed to the substantive variance embedded with the consequent variable y3..

The R² value being 0.100, it is to infer that 100% of variants in the consequent variable has been explained by the combination of these 15 causal variables.

Table 11 presents the step wise regression and it has been depicted that the 1 causal variable that is, exposure to media(x14) has been retained at the last step.

The R^2 value being 0.3498, it is to infer that 34.98% of variants in the consequent variable has been explained by the combination of these 1 causal variable.

Revelation

The migration is been fostered to the respondents who have much exposure to the media. This phenomenon depicts that if the respondents are highly exposed to mass medias like television, radio, new papers etc. they would know about many other income and livelihood opportunities in the places other than their homeland. So, they would migrate to the better opportunity places.

> The Sociology of Monsoon ISBN: 978-93-85822-58-2 96

Variables	Beta	Beta x	Reg.coef.	S.E. of	t value
		ĸ	В	В	
Age(x1)	-	-0.061	0.000	0.000	0.511
	0.003				
Education(x2)	-	0.071	0.000	0.001	0.158
	0.004				
Family size(x3)	1.002	100.277	0.067	0.001	76.487
Size of	0.011	-0.376	0.004	0.006	0.601
holding(x4)					
Homestead	-	1.054	-0.016	0.023	0.691
land(x5)	0.016				
Family	-	0.048	0.000	0.000	0.853
income(farm)(x6)	0.005				
Family income(0.001	-0.025	0.000	0.000	0.275
off farm)(x7)					
Cropping	0.004	0.035	0.000	0.000	0.652
Intensity(x8)					
Crop mix(x9)	0.001	-0.003	0.000	0.000	0.278
Livestock(x10)	0.005	-0.249	0.001	0.001	0.689
Yield of Rice(x11)	-	2.885	-0.006	0.006	0.972
	0.031				
Yield of	0.041	-3.660	0.315	0.167	1.601
Pulses(x12)					
Yield of	-	0.095	0.000	0.000	0.595
vegetables(x13)	0.003				
Exposure to	0.533	-9.126	0.038	0.038	0.986
media(x14)					
Disease pest	-	9.034	-0.263	0.265	0.993
incidence(x15)	0.528				
	Variables Age(x1) Education(x2) Family size(x3) Size of holding(x4) Homestead land(x5) Family income(farm)(x6) Family income(off farm)(x7) Cropping Intensity(x8) Crop mix(x9) Livestock(x10) Yield of Rice(x11) Yield of Rice(x11) Yield of Pulses(x12) Yield of vegetables(x13) Exposure to media(x14) Disease pest incidence(x15)	Variables Beta Age(x1) - 0.003 Education(x2) - 0.004 Family size(x3) 1.002 Size of 0.011 holding(x4) - Homestead - land(x5) 0.016 Family income(0.001 off farm)(x6) 0.005 Family income(0.001 off farm)(x7) - Cropping 0.004 Intensity(x8) - Crop mix(x9) 0.001 Livestock(x10) 0.005 Yield of Rice(x11) - Pulses(x12) - Yield of - vegetables(x13) 0.003 Exposure to 0.533 media(x14) - Disease pest - incidence(x15) 0.528	Variables Beta Beta x R Age(x1) - -0.061 0.003 - Education(x2) - 0.071 0.004 - - Family size(x3) 1.002 100.277 Size of 0.011 -0.376 holding(x4) - 1.054 Homestead - 1.054 land(x5) 0.016 - Family income(farm)(x6) 0.005 - ff farm)(x7) - 0.035 Intensity(x8) - - Crop mix(x9) 0.001 -0.003 Livestock(x10) 0.005 -0.249 Yield of Rice(x11) - 2.885 0.031 - - Yield of - 0.095 vegetables(x13) 0.003 - Yield of - 0.095 vegetables(x13) 0.003 - Exposure to 0.533 -9.126 media(x14) - <	Variables Beta R Beta x R Reg.coef. B Age(x1) - -0.061 0.000 Education(x2) - 0.071 0.000 Education(x2) - 0.071 0.000 Family size(x3) 1.002 100.277 0.067 Size of 0.011 -0.376 0.004 Homestead - 1.054 -0.016 Family - 0.048 0.000 income(farm)(x6) 0.005 - - Family income(0.001 -0.025 0.000 off farm)(x7) - - - Cropping 0.004 0.035 0.000 Intensity(x8) - - - Crop mix(x9) 0.001 -0.003 0.000 Livestock(x10) 0.005 -0.249 0.001 Yield of - 2.885 -0.006 0.031 - - - Yield of - 0.095 0.000	Variables Beta (n) Beta x (n) Reg.coef. (n) S.E. of (n) Age(x1) - -0.061 0.000 0.000 Education(x2) - 0.071 0.000 0.001 Family size(x3) 1.002 100.277 0.067 0.001 Size of holding(x4) 0.011 -0.376 0.004 0.006 Homestead - 1.054 -0.016 0.023 Iand(x5) 0.016 - - - Family income(farm)(x6) 0.005 - - - Family income(off farm)(x7) 0.001 -0.025 0.000 0.000 Orop mix(x9) 0.001 -0.003 0.000 0.000 Ivestock(x10) 0.005 -0.249 0.001 0.001 Yield of Rice(x11) - 2.885 -0.006 0.000 Yield of - 0.095 0.000 0.000 Yield of - 0.095 0.000 0.000 vegetables(x13) 0.003

Table 14: Step down Regression Analysis, festivals and monsoon (Y₄) vs. 15 causal variable (x₁-x₁₅)

R-SQ=99.92%

S.E=.01

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	97

7

SI no.	Variables	Beta	Beta x R	Reg.coef. B	S.E. of B	t value	VIF
1.	Family	1.000	100.000	0.067	0.000	254.238	1.000
R ² \	SIZE(XS) /alue-59.14	%	l		S F-(07	

Table 15: Step down Regression Analysis, festivals and monsoon (Y_4) vs. 1 causal variable (x_3)

K value-59.14%

5.E-U.U/

Result

Table 14 presents the multiple regression analysis between exogenous variable festivals and monsoon vs. 15 causal variables. It has been found that the variable family size(x3) has contributed to the substantive variance embedded with the consequent variable $y_{4..}$

The R² value being 0.9992, it is to infer that 99.92% of variants in the consequent variable has been explained by the combination of these 15 causal variables.

Table 13 presents the step wise regression and it has been depicted that the 1 causal variable that is, family size(x3) has been retained at the last step.

The R² value being 0.5914, it is to infer that 59.14% of variants in the consequent variable has been explained by the combination of these 1 causal variable.

Revelation

The family size of the farmers can be related with autumn festivals in two ways. One is obviously if family size is big then there may be more source of alternative income. So, if one sector of income is collapsed then the other sectors could support the family and the

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	98

family can enjoy the festivals. This is from the expenditure point of view. Now if we consider the family income we would find that if there persists a joint family then there would less of the fragmented land, so more crop diversification may be there, that implies more salable goods during festive seasons and more income.

SI	Variables	Beta	Beta x	Reg.coef.	S.E. of	t
no.			R	В	В	value
1	Age(x1)	0.023	0.612	0.020	0.061	0.322
2	Education(x2)	0.941	-7.919	2.573	1.008	2.553
3	Family size(x3)	0.115	8.137	0.688	1.018	0.676
4	Size of	-	124.247	-45.389	7.237	6.272
	holding(x4)	1.440				
5	Homestead	1.415	-	126.571	26.538	4.769
	land(x5)		111.228			
6	Family	-	0.866	-0.001	0.003	0.280
	income(farm)(x6)	0.020				
7	Family income(-	0.038	-0.002	0.003	0.602
	off farm)(x7)	0.039				
8	Cropping	-	7.156	-0.032	0.014	2.371
	Intensity(x8)	0.175				
9	Crop mix(x9)	-	0.155	-0.016	0.071	0.218
		0.014				
10	Livestock(x10)	-	3.741	-1.014	1.255	0.808
		0.074				
11	Yield of Rice(x11)	-	67.620	-18.097	6.908	2.620
		1.104				
12	Yield of	0.127	-6.813	86.517	229.194	0.377
	Pulses(x12)					
13	Yield of	0.097	-1.457	0.157	0.117	1.341
	vegetables(x13)					
14	Exposure to	-	77.216	-33.481	44.776	0.748
	media(x14)	5.255				

Table 16: Step down Regression Analysis, Market and monsoon.(Y₅) vs. 15 causal variables(x₁.x₁₅).

The Sociology of Monsoon ISBN: 978-93-85822-58-2

99

15	Disease pest	4.254	-62.369	189.721	308.809	0.614
	incidence(x15)					

R SQ-81.51%

S.E=11.56

Table 17: Step down Regression Analysis, Market and monsoon.(Y₅) vs. 7 causal variables(x₂,x₄,x₅,x₈,x₁₁,x₁₃,x₁₄).

SI	Variables	Beta	Beta x	Reg.coef.	S.E. of	t	VIF
no.			R	В	В	value	
1	Education(x2)	0.826	-7.028	2.260	0.879	2.569	36.600
2	Size of	-	138.549	-50.083	5.464	9.165	10.641
	holding(x4)	1.589					
3	Homestead	1.559	-123.80	139.401	20.772	6.711	19.092
	land(x5)						
4	Cropping	-	6.509	-0.029	0.012	2.516	1.392
	Intensity(x8)	0.159					
5	Yield of	-	74.792	-19.807	2.236	8.858	6.582
	Rice(x11)	1.208					
6	Yield of	0.144	-2.181	0.233	0.094	2.475	1.195
	vegetables(x13)						
7	Exposure to	-	13.160	-5.646	2.053	2.750	36.753
	media(x14)	0.886					
R	² Value-85.31%			S.E-3.93			

Result

Table 16 presents the multiple regression analysis between exogenous variable market and monsoon vs. 15 causal variables. It has been found that the variables education(x2), size of holding(x4), homestead land(x5), cropping intensity(x8), yield of rice(x11) have contributed to the substantive variance embedded with the consequent variable y₅..

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	100

The R² value being 0.8151, it is to infer that 81.51% of variants in the consequent variable has been explained by the combination of these 15 causal variables.

Table 17 presents the step wise regression and it has been depicted that the 5 causal variable that are education(x2), size of holding(x4), homestead and(x5), cropping intensity(x8), yield of rice(x11), yield of vegetables(x13), exposure to media(x14) have been retained at the last step.

The R² value being 0.8531, it is to infer that 85.31% of variants in the consequent variable has been explained by the combination of these 7 causal variables.

Revelation

If education is higher and exposure to mass media is also higher, then it can be perceived that the concern respondent has more souces to get market information's and also has more affinity towards getting big markets to sell their produces. On the other hand, if size of holding is big, cropping intensity is high and yield is good, then there would be more marketable surplus.

Table18: Step down Regression Analysis, Sociological perception of monsoon(Y_6) vs.15 causal variables(x_1 - x_{15})

SI	Variables	Beta	Beta x	Reg.coef.	S.E. of	t
no.			R	В	В	value
1	Age(x1)	0.059	1.692	0.051	0.062	0.824
2	Education(x2)	0.947	-8.488	2.684	1.023	2.625
3	Family size(x3)	0.144	10.053	0.894	1.033	0.865
4	Size of holding(x4)	-	118.378	-44.939	7.343	6.120
	_	1.376				

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	101

5	Homestead	1.343	-	124.480	26.927	4.623
	land(x5)		104.373			
6	Family	-	2.918	-0.002	0.003	0.887
	income(farm)(x6)	0.063				
7	Family income(off	-	0.078	-0.002	0.003	0.630
	farm)(x7)	0.040				
8	Cropping	-	7.089	-0.033	0.014	2.399
	Intensity(x8)	0.174				
9	Crop mix(x9)	-	0.180	-0.017	0.072	0.242
		0.015				
10	Livestock(x10)	-	3.499	-0.978	1.274	0.768
		0.069				
11	Yield of Rice(x11)	-	63.516	-18.049	7.009	2.575
		1.062				
12	Yield of	0.161	-8.378	113.590	232.552	0.488
	Pulses(x12)					
13	Yield of	0.094	-1.262	0.158	0.119	1.327
	vegetables(x13)					
14	Exposure to	-	77.987	-34.220	45.432	0.753
	media(x14)	5.184				
15	Disease pest	4.189	-62.889	193.540	313.333	0.618
	incidence(x15)					

R-SQ=86.78%

S.E-11.73

Table 19: Step down Regression Analysis, Sociological perception of monsoon (Y₆) vs.7 causal variables (x₂,x₄,x₅,x₈,x₁₁,x₁₃,x₁₄)

SI	Variables	Beta	Beta x	Reg.coef.	S.E. of	t	VIF
no.			R	В	В	value	
1	Education(x2)	0.768	-7.006	2.176	0.914	2.382	36.600
2	Size of	-	140.703	-52.463	5.676	9.243	10.641
	holding(x4)	1.607					
3	Homestead	1.568	-	145.324	21.577	6.735	19.092
	land(x5)		124.058				

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	102

4	Cropping	-	6.425	-0.030	0.012	2.460	1.392
	Intensity(x8)	0.155					
5	Yield of	-	73.265	-20.449	2,323	8.804	6.582
	Rice(x11)	1.204					
6	Yield of	0.156	-2.129	0.261	0.098	2.677	1.195
	vegetables(x13)						
7	Exposure to	-	12.799	-5.516	2.133	2.587	36.750
	media(x14)	0.836					

R SQ-85.23%

S.E-4.09

Result

Table 18 presents the multiple regression analysis between exogenous variable sociological perceptions on monsoon vs. 15 causal variables. It has been found that the variables education(x2), size of holding(x4), homestead land(x5), cropping intensity(x8), yield of rice(x11) have contributed to the substantive variance embedded with the consequent variable y_{6} ..

The R^2 value being 0.8678, it is to infer that 86.78per cent of variants in the consequent variable has been explained by the combination of these 15 causal variables.

Table 19 presents the step wise regression and it has been depicted that the 5 causal variable that are education(x2), size of holding(x4), homestead and (x5), cropping intensity(x8), yield of rice(x11), yield of vegetables(x13), exposure to media(x14) have been retained at the last step.

The R^2 value being 0.8523, it is to infer that 85.23% of variants in the consequent variable has been explained by the combination of these 7 causal variables.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	103

Revelation

The sociological perception of the respondents is the sum of all other five dependent variables. So, if all other dependent variables increased positively then the sociological perception of monsoon would also increase. So, as we discussed earlier the incensement in dependent variables like education, size of holding, crop mix, cropping intensity of several crops, exposure to media would bring incensement in dependent variables which subsequently increase the overall monsoon perception of the respondents.

Factor Analysis

Factors	variables	Factor	% of	Cumulative	Factor
		loading	variance	%	renamed
Factor	Family size(x3)	899	29.495	29.495	Family
1	Homestead	.844			resource
	land(x5)	.552			
	Livestock(x10)	.924			
	Yield of	.900			
	Rice(x11)				
	Yield of				
	Pulses(x12)				
Factor	Age(x1)	620	23.918	53.413	Perception
2	Education(x2)	.927			proficiency
	Exposure to	.927			
	media(x14)				
	Perception on	.927			
	Disease pest				
	incidence(x15)				

Table 20: Factor Analysis: Conglomeration of 15 explanatoryvariables into 5 factors.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	104

Factor	Size of	.639	12.301	65.714	Farm
3	holding(x4)	.752			resource
	Cropping				
	Intensity(x8)				
Factor	Family	.580	9.157	74.871	Family
4	income(farm)(x6)				enterprise
	Yield of				
	vegetables(x13)	670			
Factor	Family income(.584	7.164	82.035	Agro
5	off farm)(x7)	.734			ecological
	Crop mix(x9)				proficiency

Table 21 presents the factor analysis, wherein 15 numbers of independent variables have been conglomerated into 5 dominant factors.

Factor1 is consists of 5 variables viz. Family size(x3),education(x2),homestead land(x5),livestock(x10),yield of rice(x11) and yield of pulses(x12). These variables contribute about 29.49 per cent of variance, and the factor renamed as family resource.

Factor2 consists of 4 variables viz.age(x1), education(x2), exposure to media(x14) and perception on disease pest incidence(x15). These variables contribute about 23.91 per cent of variance and are renamed as perception proficiency.

Factor 3 consists of 2 variables those are size of holding(x4) and cropping intensity(x8). Which contributes about 65.71 per cent of variance and is renamed as farm resources?

The Sociology of Monsoon ISBN: 978-93-85822-58-2 105 Factor 4 consists of 2 variables viz. Farm family income (x6) and yield of vegetables(x13). These 2 variables contribute 74.87 per cent variance and is renamed as family enterprise.

Factor 5 consists of 2 variables viz. Farm income(x7) and crop mix(x9). These 2 variables contribute 82.03 per cent of variance and is renamed as agro ecological proficiency.

Path analysis

SI No.	variables	Total effect	Direct Effect	Indirect Effect	Highest indirect Effect
1	Age(x1)	-0.018	0.142	-0.16	x14(4.204)
2	Education(x2)	0.223	1.348	-1.125	x14(- 6.9899)
3	Family size(x3)	-0.146	0.7446	-0.8906	X14(1.2154)
4	Size of holding(x4)	-0.166	0.520	-0.686	X5 (- 0.6903)
5	Homestead land(x5)	0.032	-0.819	0.851	X12(0.873)
6	Family income(farm)(x6)	-0.158	-0.109	-0.049	X14(0.8716)
7	Family income(off farm)(x7)	0.032	-0.113	0.145	X7(0.7217)
8	Cropping Intensity(x8)	-0.264	-0.127	-0.137	X14(0.7288)
9	Crop mix(x9)	-0.061	-0.033	-0.028	X14(- 0.7317)
10	Livestock(x10)	-0.019	0.062	-0.081	X14(1.3709)
11	Yield of Rice(x11)	0.275	0.181	0.094	X12(1.2047)
12	Yield of Pulses(x12)	0.327	1.228	-0.901	X14(- 0.7698)
13	Yield of vegetables(x13)	0.198	-0.011	0.209	X14(- 1.0644)

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	106

14	Exposure to media(x14)	0.197	-7.094	7.291	X15(6.0039)
15	Disease pest incidence(x15)	0.192	6.004	-5.812	X14(- 7.0945)

Table 21: Path analysis: Decomposition of total effect (r) into Direct, Indirect and Residual effect[man days and Monsoon VS 15 consequent variables(x1-x15)

Residual = 63.23%

The variable exposure to media (x14) has enrooted the highest indirect effect (for 10 times) on the consequent variable. Table 21 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable education (0.223) has highest direct effect, while the variable exposure to media has exerted the highest indirect effect(7.291) on the perception of mandays and monsoon. Education as being the pursuits of cognitive construction, it has rightly contributed to the perception of loss of mandays due to climate change. Similarly exposure to media has contributed highest associative impact for this consequent variable.

The residual effect being 63.23 per cent, it is to infer that even with the combination of these 15 exogenous variables, 63.23 per cent of variance cannot be explained. This suggests the inclusion of more numbers of relevant and consistent variables for this framework of study.

So, the predominated factors, as formed by interactively accommodating them based on factor loading, can offer a strategic

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	107

implication by effectively downsizing the sphare of variables into well textured factors.

SI No	variables	Total	Direct	Indirect	Highest
31 NO.	variables	effect	Effect	Effect	indirect Effect
1	Age(x1)	0.001	0.008	-0.007	X15(1.51 2)
2	Education(x2)	0.127	-0.070	0.197	X14(2.61 9)
3	Family size(x3)	0.083	-0.018	0.101	X14(- 0.455)
4	Size of holding(x4)	-0.419	- 0.0698	-0.349	X6(- 0.400)
5	Homestead land(x5)	-0.289	0.0820	-0.371	X6(- 0.283)
6	Family income(farm)(x 6)	-0.976	- 0.9642	-0.011	X14(- 0.326)
7	Family income(off farm)(x7)	-0.144	0.033	-0.177	X14(- 0.270)
8	Cropping Intensity(x8)	-0.225	-0.018	-0.207	X14(- 0.272)
9	Crop mix(x9)	-0.112	-0.008	-0.104	X14(0.27 2)
10	Livestock(x10)	-0.361	0.012	-0.373	X14(- 0.513)
11	Yield of Rice(x11)	-0.068	-0.068	0	X14(0.28 8)
12	Yield of Pulses(x12)	-0.036	0.0005	-0.036	X14(0.39 8)
13	Yield of vegetables(x13)	0.220	0.018	0.202	X14(0.39 8)

Table 22: Path analysis: Decomposition of total effect (r) intoDirect, Indirect and Residual effect[income andMonsoon VS 15 consequent variables(x1-x15)

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	108

14	Exposure to media(x14)	0.144	2.659	-2.515	X15(- 2,552)
15	Disease pest incidence(x15)	0.143	-2.552	2.695	X14(2.65 9)

Residual-3.99%

The variable exposure to media (x14) has enrooted the highest indirect effect (for 11 times) on the consequent variable. Table 22 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable exposure to media (2.659) has highest direct effect, while the variable perception on disease pest incidence (2.659) has exerted the highest indirect effect on the perception of income and monsoon. Exposure to media has highest direct effect on the dependent variable income and monsoon rightly suggests that, the more of the exposure to media, the more relevant market information would be gotten. so, it creates a positive impact on income. Similarly perception on disease pest incidence has contributed highest associative impact on this consequent variable as, if the respondents can predict the disease pest incidence or are well aware of the control techniques, then crop loss would be minimized and subsequently income would be more.

The residual effect being 3.99 per cent, it is to infer that even with the combination of these 15 exogenous variables, 3.99 per cent of variance cannot be explained. This suggests the inclusion of more numbers of relevant and consistent variables for this framework of study.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	109

So, the predominated factors, as formed by internationally accommodating them based on factor loading, can offer a strategic implication by effectively downsizing the spare of variables into well textured factors.

SI	variables	Total	Direct	Indirect	Highest
NO.		επεςτ	Effect	Effect	Indirect
		0.000	1 0 0 1		Effect
1	Age(x1)	0.999	1.001	-0.002	X14(-0.92)
2	Education(x2)	-	-0.009	-0.5	X1(-0.589)
		0.507			
3	Family size(x3)	0.212	-0.007	0.214	X1(0.215)
4	Size of	-	-0.002	-0.068	X1(-0.069)
	holding(x4)	0.068			
5	Homestead	-	0.0002	-0.061	X1(-0.064)
	land(x5)	0.062			. ,
6	Family	-	-0.001	-0.012	X15(0.017)
	income(farm)(x6)	0.012			
7	Family income(-	0.0009	-0.049	X14(-
	off farm)(x7)	0.050			0.015)
8	Cropping	0.066	-0.0003	0.065	X14(-
	Intensity(x8)				0.016)
9	Crop mix(x9)	-	0.0001	-0.125	X1(-0.128)
		0.126			
10	Livestock(x10)	0.039	-0.001	0.038	X14(-
					0.030)
11	Yield of Rice(x11)	-	0.001	-0.142	X14(0.020)
		0.149			
12	Yield of	-	-0.007	-0.136	X1(-0.139)
	Pulses(x12)	0.137			
13	Yield of	-	-0.001	-0.275	X14(-
	vegetables(x13)	0.119			0.593)

Table23: Path analysis: Decomposition of total effect (r) into Direct, Indirect and Residual effect [migration and Monsoon VS 15 consequent variables(x1-x15)

The Sociology of Monsoon ISBN: 978-93-85822-58-2

110

14	Exposure to	-	0.156	-0.445	X1(-0.593)
	media(x14)	0.591			
15	Disease pest	-	-0.146	-0.591	X1(-0.593)
	incidence(x15)	0.591			

Residual-0.00%

The variable age (x1) has enrooted the highest indirect effect (for 8 times) on the consequent variable. Table 23 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable age (1.001) has highest direct effect, while the variable family size has exerted the highest indirect effect(0.214) on the perception of migration and monsoon. As the age of the respondents is lesser the tendency to migrate from the homeland is higher because younger aged respondents have are more keen towards higher income and higher standard of living. Similarly family size has contributed highest associative impact for this consequent variable as, higher the members higher would be the numbers of stomach that have to fed, so, more income is required. Ultimately to seek higher opportunities of income migration occurs. In another side, if numbers of the family members are more then there would be more options of earning money. If some members are staying at the homeland, the others can migrate to better opportunity places and can earn money for the fellow members.

The residual effect being 0.00 per cent, it is to infer that with the combination of these 15 exogenous variables, 100 per cent of variance can be explained.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	111

So, the predominated factors, as formed by internationally accommodating them based on factor loading, can offer a strategic implication by effectively downsizing the spare of variables into well textured factors.

Table24: Path analysis: Decomposition of total effect (r) into Direct, Indirect and Residual effect [festivals and Monsoon VS 15 consequent variables(x1-x15)

SI No.	variables	Total effect	Direct Effect	Indirect Effect	Highest indirect Effect
1	Age(x1)	0.213	-0.002	0.215	X14(- 0.315)
2	Education(x2)	-0.159	-0.004	-0.155	X14(0.524)
3	Family size(x3)	0.999	1.002	-0.003	X15(0.090)
4	Size of holding(x4)	-0.354	0.010	-0.364	X15(0.037)
5	Homestead land(x5)	-0.669	-0.015	-0.654	X12(0.029)
6	Family income(farm)(x6)	-0.100	-0.004	-0.096	X14(- 0.065)
7	Family income(off farm)(x7)	-0.184	0.001	-0.185	X3(-0.184)
8	Cropping Intensity(x8)	0.093	0.003	0.09	X3(0.093)
9	Crop mix(x9)	-0.026	0.001	-0.027	X14(0.054)
10	Livestock(x10)	-0.515	0.004	-0.519	X3(-0.512)
11	Yield of Rice(x11)	-0.915	-0.031	-0.884	X3(-0.917)
12	Yield of Pulses(x12)	-0.882	0.041	-0.923	X3(-0.886)
13	Yield of vegetables(x13)	-0.287	-0.003	-0.284	X14(0.079)
14	Exposure to media(x14)	-0.171	0.532	-0.703	X15(- 0.528)

The Sociology of Monsoon ISBN: 978-93-85822-58-2 112 Result and Discussion

15	Disease pest	-0.170	-0.528	0.358	X14(0.532)
	incidence(x15)				

Residual-00.00%

The variable exposure to media (x14) has enrooted the highest indirect effect (for 6 times) on the consequent variable. Table 24 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable family size (1.002) has highest direct effect, while the variable age(0.215) has exerted the highest indirect effect on the perception of festivals and monsoon. Family size has highest direct effect on the dependent variable income and monsoon rightly suggests that, the more numbers of family members, more diversified income opportunities are there, so, if one source of income is collapsed, others can compensate it and the whole family can enjoy the festivals all together., the more relevant market information would be gotten.so, it creates a positive impact on income. Similarly age has contributed highest associative impact on this consequent variable as, if the respondents are of higher age means they are having higher experience of how deviations in monsoon rain can affect the festivals and related industries.

The residual effect being 0.00 per cent, it is to infer that with the combination of these 15 exogenous variables, 100 per cent of variance can be explained.

So, the predominated factors, as formed by interactionally accommodating them based on factor loading, can offer a strategic

The Sociology of Monsoon		
ISBN: 978-93-85822-58-2	113	

implication by effectively downsizing the sphere of variables into well textured factors.

Table 25: Path analysis: Decomposition of total effect (r) intoDirect, Indirect and Residual effect [market andMonsoon VS 15 consequent variables(x1-x15)

SI No.	variables	Total effect	Direct Effect	Indirect Effect	Highest indirect Effect
1	Age(x1)	0.224	0.023	0.201	X14(3.113)
2	Education(x2)	-	0.940	-1.012	X14(-
		0.072			5.175)
3	Family size(x3)	0.608	0.115	0.493	X14(0.899)
4	Size of	-	-1.440	0.697	X5(1.191)
	holding(x4)	0.743			
5	Homestead	-	1.415	-2.092	X4(-1.213)
	land(x5)	0.677			
6	Family	-	-0.020	-0.344	X14(0.645)
	income(farm)(x6)	0.364			
7	Family income(-	-0.039	0.031	X14(0.534)
	off farm)(x7)	0.008			
8	Cropping	-	-0.175	-0.176	X14(0.539)
	Intensity(x8)	0.351			
9	Crop mix(x9)	-	-0.013	-0.084	X14(-
		0.097			0.514)
10	Livestock(x10)	-	-0.073	-0.364	X14(1.012)
		0.437			
11	Yield of	-	-1.103	0.575	X5(1.037)
	Rice(x11)	0.528			
12	Yield of	-	0.127	-0.589	X11(-
	Pulses(x12)	0.462			1.082)
13	Yield of	-	0.097	-0.226	X14(-
	vegetables(x13)	0.129			0.788)
14	Exposure to	-	-5.253	5.127	X15(4.252)
	media(x14)	0.126			

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	114

Result and Discussion

15	Disease pest	-	4.252	-4.378	X14(-
	incidence(x15)	0.126			5.252)

Residual-13.79%

The variable exposure to media (x14) has enrooted the highest indirect effect (for 10times) on the consequent variable. Table 25 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable perception on disease pest incidence highest direct effect (4.252) , while the variable exposure to media has exerted the highest indirect effect(5.127) on the perception of market and monsoon. As the perception on disease pest is higher, more quality consciousness would be grown and marketability of the produce would be higher. Similarly exposure to media has contributed highest associative impact for this consequent variable as more of the media awareness, more would be the available market information.

The residual effect being 13.79 per cent, it is to infer that even with the combination of these 15 exogenous variables, 13.79 per cent of variance cannot be explained. This suggests the inclusion of more numbers of relevant and consistent variables for this framework of study.

So, the predominated factors, as formed by internationally accommodating them based on factor loading, can offer a strategic implication by effectively downsizing the spare of variables into well textured factors.

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	115

SI No.	variables	Total effect	Direct Effect	Indirect Effect	Highest indirect
1	$\Lambda = \alpha(v_1)$	0.250		0.102	
1	Age(x1)	0.250	0.058	0.192	X14(3.071)
2	Education(x2)	-	0.947	-1.024	X14(-
		0.077			5.106)
3	Family size(x3)	0.603	0.144	0.459	X11(0.972)
4	Size of	-	-1.376	0.63	X5(1.130)
	holding(x4)	0.746			
5	Homestead	-	1.343	-2.017	X4(-1.158)
	land(x5)	0.674			
6	Family	-	-0.063	-0.336	X14(0.636)
	income(farm)(x6)	0.399			
7	Family income(-	-0.040	0.024	X14(0.527)
	off farm)(x7)	0.016			、 <i>、</i> ,
8	Cropping	-	-0.173	-0.181	X4(-0.582)
	Intensity(x8)	0.354			· · · · ·
9	Crop mix(x9)	_	-0.014	-0.091	X14(-
_	- (- /	0.105			0.534)
10	Livestock(x10)	-	-0.068	-0.374	X14(1.001)
		0.442	0.000		, _ (_, _ , _ , _ ,
11	Yield of Rice(x11)	_	-1 062	0 544	X5(0.985)
		0 5 1 8	1.002	0.511	/(3(0.505)
12	Vield of	-	0 1 6 1	-0.612	X11(-
12		0.451	0.101	0.012	1 042)
13	Vield of	-	0 09/	-0.21	X1/(0.775)
13	vegetables(v13)	0116	0.004	0.21	Λιτ(0.775)
1/	Evposuro to	0.110	5 1 9 7	5.052	V15(/ 197)
14	modia(v14)	0120	-2.102	5.052	VT2(4.T01)
1 -		0.130	4 1 0 7	4 7 1 7	V1 4/
12		-	4.18/	-4.31/	X14(-
	Incidence(x15)	0.130			5.182)

Table 26: Path analysis: Decomposition of total effect ® into Direct, Indirect and Residual effect [sociological perception and Monsoon VS 15 consequent variables(x1-x15)

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	116

Residual-13.22%

The variable exposure to media (x14) has enrooted the highest indirect effect (for 8 times) on the consequent variable. Table 26 presents the path analysis to decompose the TE into direct, indirect and residual effect. It has been found that the variable perception on disease pest incidence has highest direct effect (4.187), while the variable exposure to media (5.052) has exerted the highest indirect effect on the sociological perception on monsoon. perception on disease pest incidence as being the pursuits of cognitive construction, it has rightly contributed to the perception of sociological perception on monsoon. Similarly exposure to media has contributed highest associative impact for this consequent variable.

The residual effect being 13.22 per cent, it is to infer that even with the combination of these 15 exogenous variables, 13.22 per cent of variance cannot be explained. This suggests the inclusion of more numbers of relevant and consistent variables for this framework of study.

So, the predominated factors, as formed by interactively accommodating them based on factor loading, can offer a strategic implication by effectively downsizing the sphere of variables into well textured factors.

> The Sociology of Monsoon ISBN: 978-93-85822-58-2 117

Canonical covariate analysis

Dependent variable	coefficients
y1	441
y2	433
y3	3.452
y4	-1.022
y5	446
y6	.446

Table 27: CCA to derive the interaction pattern ofDependent and Independent variable

Independent variable	Coefficients
x1	.999
x2	583
x3	.164
x4	053
x5	031
x6	012
x7	043
x8	.061
x9	128
x10	.064
x11	105
x12	094
x13	105
X14	587
x15	587

In statistics, CCA is a way of inferring information from crosscovariance matrices. If we have two vectors, $X=(X_{1,....,}X_n)$ and $Y=(Y_{1,....,}Y_n)$ of random variables and there are correlations among the variables, then canonical correlation analysis will find linear

The Sociology of Monsoon	
ISBN: 978-93-85822-58-2	

combinations of the X_i and Y_j which have maximum correlation with each other. T.R Knapp notes that" virtually all of the commonly encountered parametric tests of significance can be treated as special cases of canonical correlation analysis, which is the general procedure for investing the relationships between two sets of variables". The method was first introduced by Harold Hotelling in 1936.

CCA for this study has been applied to extract the canonical covariates between two sets of variables, the left side variables and the right side variables. It has been observed that the LS variable again has formed two conglomerations further. Here, migration and monsoon has gone closest to sociology of monsoon and both have picked up four exogenous variables viz. age(x1), education(x3), cropping intensity(x8), and livestock (x10) isochronously.

On the other hand, the rest of the LS variables viz. mandays and monsoon(Y1),income and monsoon(Y2),festivals and monsoon(Y4) and market and monsoon(Y5) have formed another conglomeration keeping simultaneous interpretation with migration and monsoon(Y3) and sociological perception on monsoon(Y6) and this second conglomeration has picked up eleven exogenous variables.

So, from CCA we have come to know that the groups of Y variables have got precise selectivity to ultimately form a splendid strategy as to cater component related interaction to characterise the perception of sociology of monsoon.

The Sociology of Monsoon ISBN: 978-93-85822-58-2 119